class Prism::IndexOperatorWriteNode
Represents the use of an assignment operator on a call to ‘[]`.
foo.bar[baz] += value ^^^^^^^^^^^^^^^^^^^^^
Attributes
attr_reader arguments: ArgumentsNode
?
attr_reader binary_operator
: Symbol
attr_reader block: Prism::node?
protected attr_reader flags: Integer
attr_reader receiver: Prism::node?
attr_reader value: Prism::node
Public Class Methods
def initialize: (Integer flags, Prism::node? receiver, Location
? call_operator_loc
, Location
opening_loc
, ArgumentsNode
? arguments, Location
closing_loc
, Prism::node? block, Symbol binary_operator
, Location
binary_operator_loc
, Prism::node value, Location
location) -> void
# File prism/node.rb, line 9286 def initialize(source, flags, receiver, call_operator_loc, opening_loc, arguments, closing_loc, block, binary_operator, binary_operator_loc, value, location) @source = source @location = location @flags = flags @receiver = receiver @call_operator_loc = call_operator_loc @opening_loc = opening_loc @arguments = arguments @closing_loc = closing_loc @block = block @binary_operator = binary_operator @binary_operator_loc = binary_operator_loc @value = value end
Similar to type
, this method returns a symbol that you can use for splitting on the type of the node without having to do a long === chain. Note that like type
, it will still be slower than using == for a single class, but should be faster in a case statement or an array comparison.
def self.type: () -> Symbol
# File prism/node.rb, line 9456 def self.type :index_operator_write_node end
Public Instance Methods
Implements case-equality for the node. This is effectively == but without comparing the value of locations. Locations are checked only for presence.
# File prism/node.rb, line 9462 def ===(other) other.is_a?(IndexOperatorWriteNode) && (flags === other.flags) && (receiver === other.receiver) && (call_operator_loc.nil? == other.call_operator_loc.nil?) && (opening_loc.nil? == other.opening_loc.nil?) && (arguments === other.arguments) && (closing_loc.nil? == other.closing_loc.nil?) && (block === other.block) && (binary_operator === other.binary_operator) && (binary_operator_loc.nil? == other.binary_operator_loc.nil?) && (value === other.value) end
def accept: (Visitor
visitor) -> void
# File prism/node.rb, line 9302 def accept(visitor) visitor.visit_index_operator_write_node(self) end
def attribute_write?: () -> bool
# File prism/node.rb, line 9403 def attribute_write? flags.anybits?(CallNodeFlags::ATTRIBUTE_WRITE) end
attr_reader binary_operator_loc
: Location
# File prism/node.rb, line 9383 def binary_operator_loc location = @binary_operator_loc return location if location.is_a?(Location) @binary_operator_loc = Location.new(source, location >> 32, location & 0xFFFFFFFF) end
def call_operator
: () -> String?
# File prism/node.rb, line 9413 def call_operator call_operator_loc&.slice end
attr_reader call_operator_loc
: Location
?
# File prism/node.rb, line 9347 def call_operator_loc location = @call_operator_loc case location when nil nil when Location location else @call_operator_loc = Location.new(source, location >> 32, location & 0xFFFFFFFF) end end
def child_nodes
: () -> Array[nil | Node]
# File prism/node.rb, line 9307 def child_nodes [receiver, arguments, block, value] end
def closing: () -> String
# File prism/node.rb, line 9423 def closing closing_loc.slice end
attr_reader closing_loc
: Location
# File prism/node.rb, line 9370 def closing_loc location = @closing_loc return location if location.is_a?(Location) @closing_loc = Location.new(source, location >> 32, location & 0xFFFFFFFF) end
def comment_targets
: () -> Array[Node | Location]
# File prism/node.rb, line 9322 def comment_targets [*receiver, *call_operator_loc, opening_loc, *arguments, closing_loc, *block, binary_operator_loc, value] #: Array[Prism::node | Location] end
def compact_child_nodes
: () -> Array
# File prism/node.rb, line 9312 def compact_child_nodes compact = [] #: Array[Prism::node] compact << receiver if receiver compact << arguments if arguments compact << block if block compact << value compact end
def copy: (?flags: Integer, ?receiver: Prism::node?, ?call_operator_loc: Location
?, ?opening_loc: Location
, ?arguments: ArgumentsNode
?, ?closing_loc: Location
, ?block: Prism::node?, ?binary_operator: Symbol, ?binary_operator_loc: Location
, ?value: Prism::node, ?location: Location
) -> IndexOperatorWriteNode
# File prism/node.rb, line 9327 def copy(flags: self.flags, receiver: self.receiver, call_operator_loc: self.call_operator_loc, opening_loc: self.opening_loc, arguments: self.arguments, closing_loc: self.closing_loc, block: self.block, binary_operator: self.binary_operator, binary_operator_loc: self.binary_operator_loc, value: self.value, location: self.location) IndexOperatorWriteNode.new(source, flags, receiver, call_operator_loc, opening_loc, arguments, closing_loc, block, binary_operator, binary_operator_loc, value, location) end
def deconstruct_keys
: (Array keys) -> { flags: Integer, receiver: Prism::node?, call_operator_loc
: Location
?, opening_loc
: Location
, arguments: ArgumentsNode
?, closing_loc
: Location
, block: Prism::node?, binary_operator
: Symbol, binary_operator_loc
: Location
, value: Prism::node, location: Location
}
# File prism/node.rb, line 9335 def deconstruct_keys(keys) { flags: flags, receiver: receiver, call_operator_loc: call_operator_loc, opening_loc: opening_loc, arguments: arguments, closing_loc: closing_loc, block: block, binary_operator: binary_operator, binary_operator_loc: binary_operator_loc, value: value, location: location } end
def ignore_visibility?: () -> bool
# File prism/node.rb, line 9408 def ignore_visibility? flags.anybits?(CallNodeFlags::IGNORE_VISIBILITY) end
def inspect -> String
# File prism/node.rb, line 9428 def inspect InspectVisitor.compose(self) end
def opening: () -> String
# File prism/node.rb, line 9418 def opening opening_loc.slice end
attr_reader opening_loc
: Location
# File prism/node.rb, line 9360 def opening_loc location = @opening_loc return location if location.is_a?(Location) @opening_loc = Location.new(source, location >> 32, location & 0xFFFFFFFF) end
Returns the binary operator used to modify the receiver. This method is deprecated in favor of binary_operator
.
# File prism/node_ext.rb, line 387 def operator deprecated("binary_operator") binary_operator end
Returns the location of the binary operator used to modify the receiver. This method is deprecated in favor of binary_operator_loc
.
# File prism/node_ext.rb, line 394 def operator_loc deprecated("binary_operator_loc") binary_operator_loc end
Sometimes you want to check an instance of a node against a list of classes to see what kind of behavior to perform. Usually this is done by calling ‘[cls1, cls2].include?(node.class)` or putting the node into a case statement and doing `case node; when cls1; when cls2; end`. Both of these approaches are relatively slow because of the constant lookups, method calls, and/or array allocations.
Instead, you can call type
, which will return to you a symbol that you can use for comparison. This is faster than the other approaches because it uses a single integer comparison, but also because if you’re on CRuby you can take advantage of the fact that case statements with all symbol keys will use a jump table.
def type: () -> Symbol
# File prism/node.rb, line 9446 def type :index_operator_write_node end
def variable_call?: () -> bool
# File prism/node.rb, line 9398 def variable_call? flags.anybits?(CallNodeFlags::VARIABLE_CALL) end