Documentation Guide¶ ↑
This guide discusses recommendations for documenting classes, modules, and methods in the Ruby core and in the Ruby standard library.
Generating documentation¶ ↑
Most Ruby documentation lives in the source files and is written in RDoc format.
Some pages live under the doc
folder and can be written in either .rdoc
or .md
format, determined by the file extension.
To generate the output of documentation changes in HTML in the {build folder}/.ext/html
directory, run the following inside your build directory:
make html
If you don’t have a build directory, follow the quick start guide up to step 4.
Then you can preview your changes by opening {build folder}/.ext/html/index.html
file in your browser.
Goal¶ ↑
The goal of Ruby documentation is to impart the most important and relevant information in the shortest time. The reader should be able to quickly understand the usefulness of the subject code and how to use it.
Providing too little information is bad, but providing unimportant information or unnecessary examples is not good either. Use your judgment about what the user needs to know.
General Guidelines¶ ↑
-
Keep in mind that the reader may not be fluent in English.
-
Write short declarative or imperative sentences.
-
Group sentences into (ideally short) paragraphs, each covering a single topic.
-
Organize material with headings.
-
Refer to authoritative and relevant sources using links.
-
Use simple verb tenses: simple present, simple past, simple future.
-
Use simple sentence structure, not compound or complex structure.
-
Avoid:
-
Excessive comma-separated phrases; consider a list.
-
Idioms and culture-specific references.
-
Overuse of headings.
-
Using US-ASCII-incompatible characters in C source files; see Characters below.
-
Characters¶ ↑
Use only US-ASCII-compatible characters in a C source file. (If you use other characters, the Ruby CI will gently let you know.)
If want to put ASCII-incompatible characters into the documentation for a C-coded class, module, or method, there are workarounds involving new files doc/*.rdoc
:
-
For class
Foo
(defined in filefoo.c
), create filedoc/foo.rdoc
, declareclass Foo; end
, and place the class documentation above that declaration:# Documentation for class Foo goes here. class Foo; end
-
Similarly, for module
Bar
(defined in filebar.c
, create filedoc/bar.rdoc
, declaremodule Bar; end
, and place the module documentation above that declaration:# Documentation for module Bar goes here. module Bar; end
-
For a method, things are different. Documenting a method as above disables the "click to toggle source" feature in the rendered documentation.
Therefore it's best to use file inclusion:
-
Retain the
call-seq
in the C code. -
Use file inclusion (
:include:
) to include text from an .rdoc file.
Example:
/* * call-seq: * each_byte {|byte| ... } -> self * each_byte -> enumerator * * :include: doc/string/each_byte.rdoc * */
-
RDoc¶ ↑
Ruby is documented using RDoc
. For information on RDoc syntax and features, see the RDoc format.
Output from irb
¶ ↑
For code examples, consider using interactive Ruby, irb.
For a code example that includes irb
output, consider aligning # => ...
in successive lines. Alignment may sometimes aid readability:
a = [1, 2, 3] #=> [1, 2, 3] a.shuffle! #=> [2, 3, 1] a #=> [2, 3, 1]
Headings¶ ↑
Organize a long discussion for a class or module with headings.
Do not use formal headings in the documentation for a method or constant.
In the rare case where heading-like structures are needed within the documentation for a method or constant, use bold text as pseudo-headings.
Blank Lines¶ ↑
A blank line begins a new paragraph.
A code block or list should be preceded by and followed by a blank line. This is unnecessary for the HTML output, but helps in the ri
output.
Method Names¶ ↑
For a method name in text:
-
For a method in the current class or module, use a double-colon for a singleton method, or a hash mark for an instance method:
::bar
,#baz
. -
Otherwise, include the class or module name and use a dot for a singleton method, or a hash mark for an instance method:
Foo.bar
,Foo#baz
.
Embedded Code and Commands¶ ↑
Code or commands embedded in running text (i.e., not in a code block) should marked up as monofont.
Code that is a simple string should include the quote marks.
Auto-Linking¶ ↑
In general, RDoc’s auto-linking should not be suppressed. For example, we should write Array
, not \Array
.
However, suppress when the word in question:
-
Does not refer to a Ruby entity (e.g., some uses of Class or English).
-
Refers to the current document (e.g., Array in the documentation for class
Array
); in that case, the word should be forced to monofont.
Most often, the name of a class, module, or method will be auto-linked:
If not, or if you suppress autolinking, consider forcing monofont.
Explicit Links¶ ↑
When writing an explicit link, follow these guidelines.
rdoc-ref
Scheme¶ ↑
Use the rdoc-ref
scheme for:
-
A link in core documentation to other core documentation.
-
A link in core documentation to documentation in a standard library package.
-
A link in a standard library package to other documentation in that same standard library package.
See section “rdoc-ref
Scheme” in Links.
URL-Based Link¶ ↑
Use a full URL-based link for:
-
A link in standard library documentation to documentation in the core.
-
A link in standard library documentation to documentation in a different standard library package.
Doing so ensures that the link will valid even when the package documentation is built independently (separately from the core documentation).
The link should lead to a target in docs.ruby-lang.org/en/master/.
Also use a full URL-based link for a link to an off-site document.
Variable Names¶ ↑
The name of a variable (as specified in its call-seq) should be marked up as monofont.
Also, use monofont text for the name of a transient variable (i.e., one defined and used only in the discussion, such as n
).
HTML Tags¶ ↑
In general, avoid using HTML tags (even in formats where it’s allowed) because ri
(the Ruby Interactive reference tool) may not render them properly.
Tables¶ ↑
In particular, avoid building tables with HTML tags (<table>
, etc.).
Alternatives:
-
A verbatim text block, using spaces and punctuation to format the text; note that text markup will not be honored:
-
(Markdown format only): A Github Flavored Markdown (GFM) table, using special formatting for the text:
Documenting Classes and Modules¶ ↑
The general structure of the class or module documentation should be:
-
Synopsis
-
Common uses, with examples
-
“What’s Here” summary (optional)
Synopsis¶ ↑
The synopsis is a short description of what the class or module does and why the reader might want to use it. Avoid details in the synopsis.
Common Uses¶ ↑
Show common uses of the class or module. Depending on the class or module, this section may vary greatly in both length and complexity.
What’s Here Summary¶ ↑
The documentation for a class or module may include a “What’s Here” section.
Guidelines:
-
The section title is
What's Here
. -
Consider listing the parent class and any included modules; consider links to their "What's Here" sections if those exist.
-
All methods mentioned in the left-pane table of contents should be listed (including any methods extended from another class).
-
Attributes (which are not included in the TOC) may also be listed.
-
Display methods as items in one or more bullet lists:
-
Begin each item with the method name, followed by a colon and a short description.
-
If the method has aliases, mention them in parentheses before the colon (and do not list the aliases separately).
-
Check the rendered documentation to determine whether RDoc has recognized the method and linked to it; if not, manually insert a link.
-
-
If there are numerous entries, consider grouping them into subsections with headings.
-
If there are more than a few such subsections, consider adding a table of contents just below the main section title.
Documenting Methods¶ ↑
General Structure¶ ↑
The general structure of the method documentation should be:
-
Calling sequence (for methods written in C).
-
Synopsis (short description).
-
Details and examples.
-
Argument description (if necessary).
-
Corner cases and exceptions.
-
Related methods (optional).
Calling Sequence (for methods written in C)¶ ↑
For methods written in Ruby, RDoc documents the calling sequence automatically.
For methods written in C, RDoc cannot determine what arguments the method accepts, so those need to be documented using RDoc directive {call-seq:
}.
For a singleton method, use the form:
class_name.method_name(method_args) {|block_args| ... } -> return_type
Example:
* call-seq: * Hash.new(default_value = nil) -> new_hash * Hash.new {|hash, key| ... } -> new_hash
For an instance method, use the form (omitting any prefix, just as RDoc
does for a Ruby-coded method):
method_name(method_args) {|block_args| ... } -> return_type
For example, in Array
, use:
* call-seq: * count -> integer * count(obj) -> integer * count {|element| ... } -> integer
* call-seq: * <=> other -> -1, 0, 1, or nil
Arguments:
-
If the method does not accept arguments, omit the parentheses.
-
If the method accepts optional arguments:
-
Separate each argument name and its default value with
=
(equal-sign with surrounding spaces). -
If the method has the same behavior with either an omitted or an explicit argument, use a
call-seq
with optional arguments. For example, use:respond_to?(symbol, include_all = false) -> true or false
-
If the behavior is different with an omitted or an explicit argument, use a
call-seq
with separate lines. For example, inEnumerable
, use:* max -> element * max(n) -> array
-
Block:
-
If the method does not accept a block, omit the block.
-
If the method accepts a block, the
call-seq
should have{|args| ... }
, not{|args| block }
or{|args| code }
.
Return types:
-
If the method can return multiple different types, separate the types with “or” and, if necessary, commas.
-
If the method can return multiple types, use
object
. -
If the method returns the receiver, use
self
. -
If the method returns an object of the same class, prefix
new_
if an only if the object is notself
; example:new_array
.
Aliases:
-
Omit aliases from the
call-seq
, unless the alias is an operator method. If listing both a regular method and an operator method in thecall-seq
, explain in the details and examples section when it is recommended to use the regular method and when it is recommended to use the operator method.
Synopsis¶ ↑
The synopsis comes next, and is a short description of what the method does and why you would want to use it. Ideally, this is a single sentence, but for more complex methods it may require an entire paragraph.
For Array#count
, the synopsis is:
Returns a count of specified elements.
This is great as it is short and descriptive. Avoid documenting too much in the synopsis, stick to the most important information for the benefit of the reader.
Details and Examples¶ ↑
Most non-trivial methods benefit from examples, as well as details beyond what is given in the synopsis. In the details and examples section, you can document how the method handles different types of arguments, and provides examples on proper usage. In this section, focus on how to use the method properly, not on how the method handles improper arguments or corner cases.
Not every behavior of a method requires an example. If the method is documented to return self
, you don’t need to provide an example showing the return value is the same as the receiver. If the method is documented to return nil
, you don’t need to provide an example showing that it returns nil
. If the details mention that for a certain argument type, an empty array is returned, you don’t need to provide an example for that.
Only add an example if it provides the user additional information, do not add an example if it provides the same information given in the synopsis or details. The purpose of examples is not to prove what the details are stating.
Argument Description (if necessary)¶ ↑
For methods that require arguments, if not obvious and not explicitly mentioned in the details or implicitly shown in the examples, you can provide details about the types of arguments supported. When discussing the types of arguments, use simple language even if less-precise, such as "level must be an integer", not "level must be an Integer-convertible object". The vast majority of use will be with the expected type, not an argument that is explicitly convertible to the expected type, and documenting the difference is not important.
For methods that take blocks, it can be useful to document the type of argument passed if it is not obvious, not explicitly mentioned in the details, and not implicitly shown in the examples.
If there is more than one argument or block argument, use a labeled list.
Corner Cases and Exceptions¶ ↑
For corner cases of methods, such as atypical usage, briefly mention the behavior, but do not provide any examples.
Only document exceptions raised if they are not obvious. For example, if you have stated earlier than an argument type must be an integer, you do not need to document that a TypeError
is raised if a non-integer is passed. Do not provide examples of exceptions being raised unless that is a common case, such as Hash#fetch
raising a KeyError
.
Related Methods (optional)¶ ↑
In some cases, it is useful to document which methods are related to the current method. For example, documentation for Hash#[]
might mention Hash#fetch
as a related method, and Hash#merge
might mention Hash#merge!
as a related method.
-
Consider which methods may be related to the current method, and if you think the reader would benefit it, at the end of the method documentation, add a line starting with "Related: " (e.g. "Related: fetch.").
-
Don't list more than three related methods. If you think more than three methods are related, list the three you think are most important.
-
Consider adding:
-
A phrase suggesting how the related method is similar to, or different from,the current method. See an example at
Time#getutc
. -
Example code that illustrates the similarities and differences. See examples at
Time#ctime
,Time#inspect
,Time#to_s
.
-
Methods Accepting Multiple Argument Types¶ ↑
For methods that accept multiple argument types, in some cases it can be useful to document the different argument types separately. It's best to use a separate paragraph for each case you are discussing.